Science is the regular science that spotlights on the investigation of life and living creatures, including their structure, work, advancement, cooperation, development, dispersion, and scientific classification. The extent of the field is broad and is separated into a few specific controls, for example, life structures, physiology, ethology, hereditary qualities, and some more. The question of what is biology gains importance here
Thursday, December 16, 2021
What İs Biology? - The Complexity of Life
Science is the regular science that spotlights on the investigation of life and living creatures, including their structure, work, advancement, cooperation, development, dispersion, and scientific classification. The extent of the field is broad and is separated into a few specific controls, for example, life structures, physiology, ethology, hereditary qualities, and some more. The question of what is biology gains importance here
Where is DNA found? | What does DNA do? | What is DNA made of?
Where is DNA found?
During DNA replication, DNA unwinds so it can be copied. At other times in the cell cycle, DNA also unwinds so that its instructions can be used to make proteins and for other biological processes. But during cell division, DNA is in its compact chromosome form to enable transfer to new cells.
Researchers refer to DNA found in the cell's nucleus as nuclear DNA. An organism's complete set of nuclear DNA is called its genome.
Besides the DNA located in the nucleus, humans and other complex organisms also have a small amount of DNA in cell structures known as mitochondria. Mitochondria generate the energy the cell needs to function properly.
In sexual reproduction, organisms inherit half of their nuclear DNA from the male parent and half from the female parent. However, organisms inherit all of their mitochondrial DNA from the female parent. This occurs because only egg cells, and not sperm cells, keep their mitochondria during fertilization.
What is DNA made of?
The four types of nitrogen bases found in nucleotides are: adenine (A), thymine (T), guanine (G) and cytosine (C). The order, or sequence, of these bases determines what biological instructions are contained in a strand of DNA. For example, the sequence ATCGTT might instruct for blue eyes, while ATCGCT might instruct for brown.
The complete DNA instruction book, or genome, for a human contains about 3 billion bases and about 20,000 genes on 23 pairs of chromosomes.
What does DNA do?
Each DNA sequence that contains instructions to make a protein is known as a gene. The size of a gene may vary greatly, ranging from about 1,000 bases to 1 million bases in humans. Genes only make up about 1 percent of the DNA sequence. DNA sequences outside this 1 percent are involved in regulating when, how and how much of a protein is made.
How are DNA sequences used to make proteins?
Next, the information contained in the mRNA molecule is translated into the "language" of amino acids, which are the building blocks of proteins. This language tells the cell's protein-making machinery the precise order in which to link the amino acids to produce a specific protein. This is a major task because there are 20 types of amino acids, which can be placed in many different orders to form a wide variety of proteins.
Who discovered DNA?
For many years, scientists debated which molecule carried life's biological instructions. Most thought that DNA was too simple a molecule to play such a critical role. Instead, they argued that proteins were more likely to carry out this vital function because of their greater complexity and wider variety of forms.
The importance of DNA became clear in 1953 thanks to the work of James Watson, Francis Crick, Maurice Wilkins and Rosalind Franklin. By studying X-ray diffraction patterns and building models, the scientists figured out the double helix structure of DNA - a structure that enables it to carry biological information from one generation to the next.
What is the DNA double helix?
Scientist use the term "double helix" to describe DNA's winding,
two-stranded chemical structure. This shape - which looks much like a
twisted ladder - gives DNA the power to pass along biological instructions
with great precision.
To understand DNA's double helix from a chemical standpoint, picture the
sides of the ladder as strands of alternating sugar and phosphate groups -
strands that run in opposite directions. Each "rung" of the ladder is made
up of two nitrogen bases, paired together by hydrogen bonds. Because of the
highly specific nature of this type of chemical pairing, base A always pairs
with base T, and likewise C with G. So, if you know the sequence of the
bases on one strand of a DNA double helix, it is a simple matter to figure
out the sequence of bases on the other strand.
DNA's unique structure enables the
molecule to copy itself during cell division. When a cell prepares to
divide, the DNA helix splits down the middle and becomes two single strands.
These single strands serve as templates for building two new,
double-stranded DNA molecules - each a replica of the original DNA molecule.
In this process, an A base is added wherever there is a T, a C where there
is a G, and so on until all of the bases once again have partners.
In addition, when proteins are being made, the double helix unwinds to allow a single strand of DNA to serve as a template. This template strand is then transcribed into mRNA, which is a molecule that conveys vital instructions to the cell's protein-making machinery.